

DIPARTIMENTO PER LA INNOVAZIONE NEI SISTEMI BIOLOGICI, AGROALIMENTARI E FORESTALI

Nature 4.0 Inspire to invent change

DESIGN OF A FLEXIBLE, EXPANDABLE, AND CUSTOMIZABLE SENSOR NETWORK FOR MONITORING LIVESTOCK BEHAVIOUR AND WELFARE

Francesco Renzi – University of Tuscia (DIBAF)

Milanesi M., Pietrucci D., Vignali G., Carta A., Ajmone-Marsan P., Chillemi G., Valentini R.

IEEE 2023 - MeAVeAS Naples, April 26-28, 2023

Introduction

Increase of animals per farm Traceability — Early warning systems

Precision livestock farming

Single sensor on single spot
 Incompatibility among devices

AnimalTalker

Concept

AnimalButtons

- Collect information on **one particular parameter**
- Elaborate collected data if required
- Send the data over **BLE** (Bleetooth low energy) to the collar

Button models:

MButton: movements using an accelerometer

TButton: *skin temperature* using a *TRH sensor* and a *thermistor* **PButton**: *pulse oximetry* and *IR temperature*

AnimalCollar

- **Receives** the data from the AnimalButtons
- Takes **GNSS position**, **TRH** and **accelerometric** measurements
- Send the data to a server using NB-IoT/Lora connection

Additional technologies AnimalButtons sd version RFID subcutaneous sensor

Design - AnimalButtons

ATtiny 3226 (Microchip Technology):

- Low power tinyAVR [®] family, 20 MHz
- 3 kB of SRAM
- 256 B of EEPROM
- 3 x 3 mm form factor (20 pins)
- 1.6 mA power consumption (5 MHz), 2 μA in sleep mode

Sd version:

• Same sensors - STM32L0, Arm® 32-bit Cortex®-M0+ with MPU, 32 MHz

HM-BT4502 BLE module:

- Complete BLE 5.0 module slave role
- UART communication
- Package length up to 240 bytes
- 3 V, 8 mA power consumption, 4 μA in low power mode
- Support 2 Mbps data transmission

Design - AnimalCollar

SIM7020 (Simcom):

- Multi-Band NB-IoT module
- 17.6 x 15.7 x 2.3 mm form factor
- 2.1 to 3.6 V,
 - ∼38 mA in transmission (10 dBm),5.6 mA in IDLE mode,

down to 3.4 μ A in PSM mode

XIAO nRF52840 (Seeed Studio):

- ARM[®] Cortex[®]-M4 (Nordic nRF52840) 32 bit, 64 MHz
- 21 x 17.5 mm form factor
- Support **BLE 5.0**, NFC, ZigBee with onboard antenna
- 1 MB flash memory
- 256 kB RAM
- 16 mA power consumption,
 5 μA in deep sleep mode

MAX M10S GNSS module (U-Blox):

- Position accuracy (CEP) 1.5 m
- Time to first fix (cold start) ~ 30 s
- 13 V,
 - ~13 mA in acquisition,
 - \sim 7 mA in tracking mode
- AssistNow feature available to reduce TTFF

LIS3DHTR accelerometer (STM)

SHT41 TRH sensor (Sensirion)

Preliminary field test

16 devices composed of an Animalcollar and a MButton were installed

1 BLE skin temperature sensors were tested

4 Animal were equipped with RFID temperature sensors in 2 different spots

3 MButton sd version collected high frequency data for several hours

1 prototype of sd heart rate sensor was tested

7 different parameters related to livestock wellbeing were collected,5 using IoT technologies

PRIMA SCALA-MEDI: optimise the sustainable use and conservation of local genetic resources from Mediterranean region, focusing on adaptation to climatic conditions and consumer preferences

Sd Version - MButton

3 sheep monitored over several hours

The sensor was placed on the ankle of the sheep

600 Hz sampling frequency

The application of a Fast Fourier Transform shows that the increase of the sampling frequency above 200 Hz and below 600 Hz does not provide additional information.

Sd Version – Heart rate

The sensor was placed on the hear of the animal – high concentration of blood vessels

The pattern is clearly visible

RFID sensor

Sample collected with a thermal camera (tc)

Placed in the neck and in the leg of four sheep

RFID sensors ~ head temperature (tc) RFID sensors \neq rectal, eye (tc), udder (tc)

Movements

Mbutton data 20 points per hour Blue – lower standard deviation Red – higher standard deviation

Standard deviation provides information on overall animal condition

Average	St.d. of St.ds.	
Н	L	Overall movement is HIGH
н	Н	Movement is HIGH on some directions
L	L	Movement is LOW
L	Н	Movement is HIGH in 1 direction

Temperature

TButton data

6 points per hour

- Daily patterns can be clearly pointed out
- Strong correlation between NTC thermistor data and ambient temperature

THI index

 $THI = t_F - (0.55 - 0.0055 * h) * (t_F - 14.5)$

Data Chain

Ongoing developments

- 1. Use a camera along with sd version AnimalButtons to relate collected data with specific behaviours
- 2. Design an IoT reader for RFID sensors
- 3. Design the Pbutton after the encouraging results obtained during the preliminary test
- 4. Create a LoRaWan version
- 5. Create a stand alone version of some AnimalButtons (LoRaWan)
- 6. A different configuration of the data chain si under evaluation

AKNOWLEDGMENTS

Highlander

High performance computing to support smart land services

SEBASTIEN

DIPARTIMENTO PER LA INNOVAZIONE NEI SISTEMI BIOLOGICI, AGROALIMENTARI E FORESTALI

National Center for Technology in Agriculture

IEEE 2023 - MeAVeAS Naples, April 26-28, 2023

CONTACT francesco.renzi@unitus.it